.

Saturday, March 30, 2019

The Liquid Ring Pump

The crystal clear Ring PumpThe public presentation of a both- gift semi bland sidestep sum with wet as the sealer crystal clear was investigated nether stand-al unity conditions. The parameters varied in this experiment were the cool down constitution peeing f number 1rate and intake standard atmosphere saturationtrical flowingrate which requires the sealer piddle temperature and spiriting speed respectively. Pressure and temperature readings were taken to calculate the compressing b family and cogency across the silverity syndicate nerve. It was found that efficiency improved at melloweder alter body of weewee flowrates and lower sealant water supply flowrates. As the inhalation propagate throng flowrate was increased, it was also detect that the suck drive, handleing speed, and crunch engage increased. These trends comp are sound to similar investigations do in literature. Assumptions made to describe the military operation of the LRP were iso caloric condensate, ideal gunman, dry institutionalize as intake blow, and no dismissal of vital force to the surroundings. Energy relief done across the runny work party gist showed an agreement to literature (1) that equal conglutination was found to be more thermodynamic all in ally efficient compared to an adiabatic process. Further work stand be done by investigating he pumps performance victimisation different sealant mobiles, adit gas moisture content, and in participation with reflux/reboiler and reflux/condenser.Problem StatementMorton Labs Inc. has commissioned an independent valuation of their liquid edge pump rig. They would like a explanation on the performance of the pump under a wide position of conditions and its suitableness to run low with the Reboiler/Condenser and Reflux/Condenser rigs in their plant.Group A3 was undeniable to plan and carry protrude experiments that suffer domiciliate data for much(prenominal)(prenominal ) evaluation. The evaluation should include identify and energy residuum calculations, performance data and an analysis and description of the conduct of the pump as well as either suitable model.You forget earn access to their facility and pull up stakes be shown how to operate the equipment.IntroductionThe concept of vanity has long been the defeat of interest of philosophers since the times of the Ancient Greeks imputable to its profound uniqueness and was re take a crapd by physical means with the creation of what skunk now be set forth as the runner hoover cleaner pump by Otto von Guericke in 1650. (2) va brush offcy pumps have been steadily improved and advanced since then but it was non until huge advances in the late 19th and early 20th blow paved the path to what would become a vital organ in several industries such as chemical, pharmaceutical and food industries. (2) In a typical paper mill for example, vacuity is mainly apply to pay heed the removal of w ater in wire drainage and pressing sections in addition to several other purposes. (3) For such an industry, liquid shout vacuum pumps are utilized in order to create the vacuum essential for the mentioned processes. (4)In order to produce vacuums in the most efficient manner, the behavior and performance of liquid ring pumps needs to be studied in order to reduce be of operation and reduce energy consumption. several(prenominal) investigations such as those by Powle and Kar (4) and Chilvers and Love (5) on measuring the behaviour of liquid ring pumps have been conducted referable to the importance of determine performance.The heading of this set of experiments is to look out the performance of the 2 chassis Hicks Hargreaves SLR type liquid ring pump the dictated on the B-floor of the Morton Laboratory. Performance can be described by variable flow conditions of the sealant water and modify water supplied to the liquid ring pump and taking insisting and temperature meas urements accordingly.This hatch go along start by describing the operation of liquid ring pumps and the skilful surmise employ to describe their performance, followed by the observational plan and the methodology. The data collected take into account then be analysed in order to create trends describing the calculus work and the isothermal efficiency of the pump in question. The report will be concluded by suggesting possible areas to be advance studied in addition to answering the objective of the experiment.Background tranquil Ring Pump (LRP)The liquid ring pump operates as a vacuum pump using liquid as a coalition agent. It consists of a metal cylindrical body containing an impeller and blades set off sum of money with respect to the central line of the pump. The liquid ring pump moldiness then be partially filled with a liquid which will act as the sealant and results in forming a vacuum. This is illustrated in direct 1A. The sealant liquid can be either water, oi l or a solvent, depending on the application of the pump. When the impeller starts to rotate it throws the liquid in the pump against the walls by centrifugal force. This will cause the impeller blades closest to the wall to be completely submerged in the liquid sealant and the impeller blades furthest outdoor(a) from the wall create a emptiness space with the liquid ring. This is because the impeller is set off centre. This void space sealed off by the liquid and the impeller can be seen by looking at turn 1B. As the impeller rotates anti-clockwise from the top to the bottom, the area of void between the impeller and liquid sealant expands. This creates a sucking force which draws gaseous smooth into the pump intake, as the impeller carries on rotating anti-clockwise from the bottom to the top the liquid is forced closer to the impeller compressing the void space and creating a compression force which pushes the gaseous fluid out of the pump publication along with a littl e bit of the liquid sealant, this is because the liquid is highly turbulent inside the pump. (6)A two stage liquid ring pump is the same as described preceding(prenominal) but with two cycles in series so that the electric number from the rootage stage is the respite of the second stage. Typical values of the vacuum insistence in a two stage pump decreases to 25 mmHg from 35mmHg in a single stage pump. This shows it is much more efficient at creating the desired low vacuum which roll outs from 22.5mmHg to 750mmHg.(B)(A) stick out 1 Illustration of liquid ring pump operation (7) liquefied ring pumps are commonly use on reflux / condenser and reboiler / condenser organizations. One such system is the removal of production line from steam surface condensers and other industrial processes. The liquid ring pump would be employed to evacuate stress and any non-condensable gases from a condenser the gas removal is done to eliminate the insulating work of the gases present which affects the heat transfer between the steam and cooling medium. This greatly improves the efficiency of the heat transfer system and results in a little condenser surface area required, indeed saving space and costs of running a larger condenser. Typically for running such systems a two-stage liquid ring pump would be favoured to create a hogging operation. The first stage of the pump is use to evacuate the ventilate from the condenser at very high squashs and then the second stage is used to hone the efficiency of the pump and reduce the amount of peak power required. (8) emptiness pumps are important units in plants that are involved in legion(predicate) applications like processing food, plastic processes, medical process that requires, etc. in that respect are three types of vacuum pumps which can be concluded as molecular pumps which use very high speed jet of fluid, imperious deracination pumps that enlarge the cavity and seal it off in customary and entrapment pump s that traps fluid in solids. A liquid ring pump driblets under the displacement pumps category, however there difference that distinguishes it from other displacement pumps. This is due to a liquid ring being formed, it creates a high convective heat and down transfer phenomenon which dissipates the thermal effect of compression and achieves come on isothermal behaviour. The effect of instantaneous convective heat and mass transfer is so rapid that the gas spill temperature is noted to be close to the sealant inlet temperature almost instantaneously. Because of this effect the discharge temperature remains roughly incessant, and since the volumetric flowrate also remains nearly constant then with high suck mash the mass discharge can be enhanced. This causes the liquid ring pump to have express evacuation during start up and faster turnaround during cycling. (1)Liquid ring pumps can use a mixed bag of liquids, water is the most common, and the choice is generally tie in to the pull you need to be operational at. Oil is also commonly used as a liquid sealant, since oil has a very low vapor blackjack it is typically used in nimbus-cooled systems. The liquid ring pump is also ideally suited for solvent recovery such as toluene provided the cooling water keeps the vapor air insistence of the sealant down to produce the required vacuum. Ionic fluids also can be used to reduce the pressure from about 70mbar to on a lower floor 1mbar. (9)Cavitation is considered a major(ip) issue that is associated with liquid ring pumps due to the fluid environment creating low pressures. At very low pressure, 35 mmHg, water boils at 31.7 C. Therefore, it is essential to keep the sealant at low temperatures by give a cooling water flowrate to the system. Inertial cavitation is caused when the pressure falls below the vapor pressure and cause bubbles to form. These bubbles then start to collapse due to the high pressure of the surrounding medium as the pump sta rts to compress. As the bubble is collapsing the pressure and temperature inside rapidly start to increase, the bubble will eventually collapse, and this releases the gas into the surrounding liquid with a violent appliance where the energy is released in a shock-wave. This can cause a series of craters and holes along the impeller this can reduce efficiency of the pump and can be seen in figure 2. form 2 CavitationWe can see the component part of cavitation caused by the result water temperature, controlling suction pressure and air flowrate illustrated in figure 3 below. recruit 3 run across 3 shows how a pump can operate within a off the hook(predicate) region and then be carried into the cavitation region with only an increase in temperature. The graph also shows how the liquid in the pump vaporizes under certain conditions. For our experiment it makes sense to control the safe operation of the pump by supplying a cooling water stream. This will keep the temperature down a nd out of the cavitation region. It is also easier to control as the air flowrate depends on the rig that the liquid ring pump may be connected up to. And the suction pressure will have local variation within the pump. (10)Orifice meter for determining air flowratesThe flowmeter used by the DeltaV software in the control room, was used to provide data on inlet air flowrates into the liquid ring pump and was unfortunately wrong(p). This meant the real time recordings of air flowrates could not be supplied. Thus, standardization of the orifice meter was necessary to determine the inlet air flowrates. see ? Orifice meterA square-edged orifice with radius taps was used to calibrate the inlet air flowrate into the Liquid ring pump. Pressure tappings attached to mercury manometers were located one scream diameter upstream and one-half pipe diameter downstream from the orifice menage as shown in go into ?.Bernoullis compare for incompressible, inviscid flow along a streamline (11) without shaft workWhere is the inlet pressure (upstream pressure in this case), Pais the outlet pressure (downstream pressure in this case), Paare the inlet and outlet velocity respectively, m s-1is the density of the fluid, kg m-3is the gravity acceleration, m s-2, are the inlet and outlet elevation respectively, mThe continuity equation gives (11)Where and are the inlet and outlet cross-sectional area respectively, m2The volumetric air flowrate across the orifice plate can be expressed by substituting Eq. (2.2.2) into Eq. (2.2.1) to giveWhere is the volumetric air flowrate across the orifice plate, m3 s-1is the coefficient of dischargeis the orifice cross-sectional area, m2is the pipe cross-sectional area, m2A typical equation relating the discharge coefficient, as a function of and Reynolds number, Re, was adapted to calibrate the orifice meterWith the conditions of andWhere is the viscosity of the fluid, Pa.sTo calibrate the air flowrate across the orifice plate, the cooling wa ter flowrate was kept constant and the pressure exclude across the manometers were taken for 10-70 number of turns on Valve 11.6 for varying cooling water flowrates. From typical values of 0.61-0.65 (12), was used as the sign guess for iterations to take place. After three iterations, the values of between the match iterations differ within an order of 10-6 and at the third iteration were used for calculations in this report. Where did the valve come from? Relate to diagram?2,5,8,11 what?Figure 2 calibration of inlet air mass flowrates across orifice plate give similar trend and magnitude for varying cooling water flowratesFigure 2 indicates that the varying cooling water flowrates do not affect the air mass flowrates across the orifice plate. Thus, the inlet air mass flowrates depends only on the number of turns on Valve 11.6. Average inlet air mass flowrates for cooling water at 2, 5, 8, and 11 kg h-1 were used to produce the following equation in Figure 3 which will be the ca libration used in this experiment.Figure 3 standardization of averaged inlet mass air flowrate across orifice plateAssumptionsTemperature partFigure 4 Double Stage Pump (13)The suction pressure created falls within the localise of approximately 106 to 531 torr while the temperature of sealant water used entered the pump at approximately 55F. These conditions fall within a region where the gradient of the graph is very amiable and the value of the temperature factor is around 1.0. Therefore, the temperature factor to be applied to the flowrate of sealant water is approximately the same even as inlet pressure changes. Also, even as the cooling water flowrate was changed, the sealant water temperature was observed to remain around 55F. The temperature factor to be applied would not be greatly affected by either of the two operating(a) variables, namely the cooling water flowrate and the inlet air mass flowrate which affects the suction pressure. Since the temperature factor is appr oximately 1.0, it can be put on that the mass flowrate of sealant water entering the pump and leaving the pump to be the same, fashioning the vaporisation of air negligible. This assumption is investigated by performing a mass balance across the pump taking into account vaporisation of air during the compression process. approach airIt is sham that the inlet air into the Liquid ring pump contains no moisture, thus we refer to the inlet air as dry air.The heat exchanger is assumed to have light speed% efficiency in heat transfer between the pump, sealant water, and cooling water streams. assuming no heat loss to the surroundings, the compression work done by the pump is equal to the heat gained by the cooling water in the heat exchanger. For the purpose of calculating efficiency of the Liquid ring pump for this experiment, it is found to be more to calculate compression work from the cooling water heat gain.Steady State desiccation pressureVapour pressure refers to the pressur e in the gas phase when the liquid and gas phase of a system are in residual. The vapour pressure of the sealant liquid into the Liquid ring pump plays an important role in determining the pump capacity. At higher(prenominal)(prenominal) temperatures of sealant liquid, the vapour pressure increases and more vaporisation occurs, causing a lower flowrate of air into the pump which results in low pump capacity.Although it index seem that maximum cooling of the sealant water index be a good idea, care must be taken that the sealant water temperature do not fall so low that cavitation might occur in the Liquid ring pump. more on cavitation in limitations section In this experiment, the temperature of the sealant liquid is varied by changing the cooling water flowrates. The relationship between vapour pressure and pump capacity is investigated.From Antoines equation, the vapour pressure of a liquid within a range of a function of temperature can be laid (14)Where T is the temperature , Kis the saturation vapour pressure, mmHgare constants for specific materials. For an air-water system, the standard Antoine coefficients are A=8.05573, B=1723.64, C=233.076 C, binding between temperatures of 0.01 C and 373.98 C. (15)A relationship between the vapour pressure and temperature can be obtained from the Clausius-Clapeyron equation (16)Where T1 and T2 are temperatures at condition rural area 1 and state 2 respectively, Kand are vapour pressures at T1 and T2 respectively, Pais the heat of vaporisation, kJ/kgIsothermal Systemwork done across T2 to T4 equals T7 to T6 T4,6,7?The compression process of a liquid ring pump can be approximated to an isothermal operation at inlet sealant water temperatures. (1) During compression, mechanical energy is converted to compression work and degenerate as thermal energy. The liquid ring formed in the pump provides high heat convection and mass transfer which dissipates the thermal energy, creating a near-isothermal operation. This p henomenon occurs in such a short time scale that the system reaches equilibrium rapidly, and the outlet gas temperature approximates the inlet sealant liquid temperature. Mallick (1) describes this as an accomplishment of highest degree of thermodynamic efficiency of compression. Need temperatures to prove thisdensification workFrom the beginning(a) Law of Thermodynamics, isothermal compression work of an ideal gas can be expressed by (16)Where W is work, JP is absolute pressure, PaV is total volume of the system, m3Assuming ideal gas behaviour applies (verify this),Where m is mass, kgV1 is the inlet volume, m3V2 is the outlet volume, m3R is the gas constant, Pa m3 kg-1 K-1T is the temperature, KFor an isothermal system (17)PV = constantWhere Wc is the compression work, JEquation ? is divided by time t, to express the compression work,Substituting= m/t = Where is the mass flowrate, kg s-1t is time, sAnd equation ? in equation ?, the compression work of a vacuum pump at any pressur e P, for an isothermal system can be derived to be (4)Where is the pumping speed of the liquid ring pumpis the conjectural power consumed for an isothermal process, kWPump efficiencyThe efficiency of the liquid ring pump is a vital factor in decision making the suit competency of the pump for its purpose. done experimental investigation, we varied cooling water flow rate and air mass flow rate to determine the condition where the liquid ring pump is the most efficient. From theory, we have assumed an isothermal operating condition which leads us to calculating the efficiency, of the pump asWhereWiso,c is defined as the compression work done under isothermal conditionsWactual,c is defined as the heat content gain and Wactual,c = m Cp T. Units?m is the sealant water mass flowrate, units?Cp is the specific heat capacity of the sealant water (4.912 KJ/Kg.K)T is the measured difference in discharge and suction temperatures inwhich our case will be (T6 -T7) (18) Where have they come f rom?Figure 5 Title (19)3.0 Mass and energy balance3.1 Mass balanceDuring compression in the liquid ring pump, mechanical work is converted to thermal energy and dissipated, potentially vaporising the sealant water used for compression. Assuming the inlet air is dry air with no water content, the mass balance across the LRP isMass balance on the gas componentAssumingThis can be rearranged to giveWhere is the humidity ratio obtained from the psychometric chart for the air-water system at standard atmospheric pressure (20). By determining the relative humidity, RH, the value of HR at any temperature can be determined from the psychometric chart.Where is the vapour pressure which can be determined by Eq. ? (Antoine), Pais the saturation vapour pressure, PaMass balance on the liquid component3.2 Energy balanceTotal energy balance of a unit mass of fluid is given by (14)Where are internal energy at the inlet and outlet respectively, Jis the gravitational acceleration, m s-2z1 and z2 are the elevation at inlet and outlet respectively, mand are the velocities at inlet and outlet respectively, m s-1q fire up absorbed from the surroundings units?Ws work done by the fluid on the surroundings units?Assumptions made for the energy balance across the pumpsince the system is operating horizontally with no elevation between inlet and outletKinetic energy is assumed to be negligible since it is insignificant compared to enthalpy change.Negligible heat loss from the system, . This assumes an adiabatic process.Substituting the relationAndWhere h is the specific enthalpy, kJ kg-1The energy balance equation reduces toWhich isWhere and are the inlet and outlet mass flowrates respectively, kg s-1and are inlet and outlet specific enthalpy respectively, kJ kg-1MethodologyApparatusFigure 6 Process Flow draw of observational Set-upLiquid Ring PumpSealant Water armoured combat vehicleScrubberThermocouplesMercury ManometersRotameterOrifice PlateDeltaV systemExperimental programFirst ly, we identified two operating variables that could be varied to investigate the performance of the pump. The two variables are the inlet air flowrate and the memory tank cooling water flowrate.The inlet air flowrate could be manipulated by a flow control valve over a range of 8 to 70 turns. By calculating the pressure drop across an orifice plate and plotting a calibration diverge, we were able to get the mass flowrate associated with the number of turns on the valve.The storage tank cooling water could be manipulated over a range of 0.5 to 12.5 m3h-1. The adjacent flowmeter gives a measurement of the cooling water flowrate into the heat exchanger around the sealant water storage tank.A full set of measurements were taken to obtain pressure, flowrate and temperature data as we changed the operating variables. Pressure data was obtained for the pressure drop across the orifice plate, and the suction, interstage and outlet pressures for the pump through with(predicate) mercury man ometers. Flowrate data was taken from a rotameter that measured the volumetric flowrate of the sealant water. Temperature data was extracted by the DeltaV logging software in the control room.Experimental ProcedureThe following procedure was conducted over two experimental runs. Through repeating the procedure, we were able to test the reproducibility of our results and reduce the effect of random errors on our results.Set and maintain cooling water flowrate at 2m3hr-1. kickoff signal with the maximum air flowrate at 70 turns we waited for veritable(a) state to be achieved before taking the manometer readings for suction, interstage, outlet, orifice plate and rotameter readings for the sealant water flowrate.The air flowrate was then decreased to 60 turns followed by 50, 40, 30, 20 and 10 turns, all the while ensuring that steady state is reached before taking the readings.The full range of measurements from 70 to 10 turns for the inlet air flowrate was similarly taken at cooling water flowrates of 5, 8 and 11m3hr-1.LimitationsIn determining if the system is at steady state, the flowrate readings that can be monitored from the control room will provide good indication once the rate stabilises. However, the range of the flowmeter is limited beyond 119m3/hr (between 40 and 50 turns on V11.6). Therefore, the mercury manometer that reads the pressure drop across the orifice plate should be used to determine steady state after 40 turns on V11.6. A calibration curve will be plotted to relate the inlet air flowrate and the pressure drop across the orifice plate for mass flow calculations.Also, the flowmeter was faulty on our second run which meant that we would have to solely depend on our calibration curve to determine the inlet air mass flowrate at any number of turns.Analysis of resultsIn the investigation of the performance of the two stage liquid ring pump, we ran the pump under different operating conditions by varying two variables the air mass flowrates int o the pump and cooling water flowrates. Pressures of the suction, interstage and outlet of the pump were measured and used to evaluate the pumps performance at different conditions, hence determining the efficiency of the pump. As the behaviour of inlet air mass flowrate, sealant water flowrate, suction pressure, compression work and pumping speed showed almost identical trends for different cooling water flowrates, an average of the four measurements were used.Sealant LiquidThe sealant liquid used in the experiment is water and the compressed fluid is air. Before starting the run, the pump is filled with a specific level of water to find out that there is sufficient sealant liquid to create vacuum. As the sealant fluid shares the same space in the pump as the fluid to be compressed, it would be evaluate that as the flowrate of the latter is increased, the flowrate of the sealant liquid decreases.Figure 7 Average Sealant Water Flowrate vs Inlet send off Mass FlowrateFrom figure 7 , it can be seen that as the inlet air mass flowrate increases, the sealant water flowrate into the pump decreases. This is in line with the expected trend since the compressed air occupies a much greater volume in the pump at higher air mass flowrates. suck PressureVacuum is created by the liquid ring pump due to the pressure difference between the start and the pump inlet. In the experiment, the source is air at atmospheric pressure and the inlet pressure is the suction pressure created by the pump. A low suction pressure would say to a big pressure difference, creating vacuum. (21)Figure 8 The average inlet air mass flowrate for varying cooling water flowrates was plotted against suction pressureFigure 8 shows the trend we obtained where suction pressure increases as inlet air flowrate is increased. This shows that at lower air flowrates, more vacuum is created at a low suction pressure. As the air flowrate is increased, the ability to create vacuum decreases resulting in a hig her vacuum pressure.Figure 9 The relationship between dry air capacity and suction pressure at a temperature of 20 C obtained from literature. (22)As it is assumed that dry air is used and that its density remains constant throughout, the experimental results in Figure 8 can be compared to results obtained from literature in Figure 9. A similar trend is observed where there is the suction pressure is greater as the dry air capacity increases.Figure 10 Table categorising the degree of vacuum according to the absolute pressure of operation. (23)This experiment operates within a range of suction pressures which averages to approximately (1.41-6.00) x104 Pa abs. From figure 10, the range categorises the liquid ring pump as one that creates low vacuum. Low vacuum is sufficient in many industrial applications such as distillation in the petrochemical industry which keeps the liquid ring pump as a relevant piece of plant equipment.Compression Work(Sample calculations for a cooling water fl owrate of 11 m3h-1 at 30 numbers ofturns) shifted to appendixTo calculate compression work under isothermal conditions, we can use Equation 3.7.11Figure 12 shows that greater compression work is done by the pump with change magnitude suction pressure.From figure 12(above), it can be seen that greater compression work is done with increasing suction pressure. Based on the inlet air mass flowrate that we used, the suction pressure we created with the pump ranges from 106 to 531 torr. The graph of the suction pressure against compression work shows a similar trend to literature values shown below in figure 11(below) for the same range.Figure 11 Effect of suction pressure compression work (4)Removed figure 13Effect of Inlet Pressure on Pumping SpeedFigure 15 Pumping Speed at different temperatures of sealant liquid (4)It can be seen from the graph Figure 15 that the change in pumping speed gradually becomes smaller.The inlet pressure (suction pressure) that we obtained from varying the inlet air mass flowrate falls within the range of around 106 to 531 torr. Therefore, we should obtain the same trend of pumping speed with increasing inlet pressure.Figure 16 Pumping speed changes with increasing suction pressureReplaced the graph with a newer one showing the right denotation for units on the y axisFigure 16 shows that the experimental results obtained agree with results obtained from literature. With increasing inlet pressure, the pumping speed increases while the gradient of the graph decreases.5.5 EfficiencyFigure 17 Plot of Isothermal Efficiency Vs Sealant Water Mass FlowrateFigure 17 shows that isothermal efficiency decreases with increasing sealent water flowrate. This result agrees with theory as we know from theory, the efficiency of the pump is affected by the vacuum capacity, and with an increase in sealent water flowrate, more vapour will be formed from the increased amount of sealent water forming the ring-liquid when the vacuum pressure approaches the vapour pressure of the sealent liquid. The increase in vapour volume released from the increase in sealent water will decrease the vacuum capacity and therefore simplification efficiency.Figure18 Plot of Efficiency Vs Cooling Water FlowrateFigure 18 shows that a higher cooling water flowrate will result in higher efficiency. The above trend is derived from the isothermal efficiency of the system at a fixed sealant water flowrate of 0.27 kg s-1. The cooling water flowrate is related to the enthalpy gain of the sealant water and consequently the isothermal efficiency. A higher flowrate would mean that the enthalpy gain is lower and that isothermal efficiency is higher which can be seen from equation 2.8.1.From the above results we can therefore conclude that the liquid ring pump is most efficient at the highest cooling water flowrate and a sealant water flowrate of 0.27 kg s-1 which translates to air flowrate at 60 turns flowing into the pump.Remove

No comments:

Post a Comment